68 research outputs found

    Optimal Axes of Siberian Snakes for Polarized Proton Acceleration

    Full text link
    Accelerating polarized proton beams and storing them for many turns can lead to a loss of polarization when accelerating through energies where a spin rotation frequency is in resonance with orbit oscillation frequencies. First-order resonance effects can be avoided by installing Siberian Snakes in the ring, devices which rotate the spin by 180 degrees around the snake axis while not changing the beam's orbit significantly. For large rings, several Siberian Snakes are required. Here a criterion will be derived that allows to find an optimal choice of the snake axes. Rings with super-period four are analyzed in detail, and the HERA proton ring is used as an example for approximate four-fold symmetry. The proposed arrangement of Siberian Snakes matches their effects so that all spin-orbit coupling integrals vanish at all energies and therefore there is no first-order spin-orbit coupling at all for this choice, which I call snakes matching. It will be shown that in general at least eight Siberian Snakes are needed and that there are exactly four possibilities to arrange their axes. When the betatron phase advance between snakes is chosen suitably, four Siberian Snakes can be sufficient. To show that favorable choice of snakes have been found, polarized protons are tracked for part of HERA-p's acceleration cycle which shows that polarization is preserved best for the here proposed arrangement of Siberian Snakes.Comment: 14 pages, 16 figure

    Strength of Higher-Order Spin-Orbit Resonances

    Full text link
    When polarized particles are accelerated in a synchrotron, the spin precession can be periodically driven by Fourier components of the electromagnetic fields through which the particles travel. This leads to resonant perturbations when the spin-precession frequency is close to a linear combination of the orbital frequencies. When such resonance conditions are crossed, partial depolarization or spin flip can occur. The amount of polarization that survives after resonance crossing is a function of the resonance strength and the crossing speed. This function is commonly called the Froissart-Stora formula. It is very useful for predicting the amount of polarization after an acceleration cycle of a synchrotron or for computing the required speed of the acceleration cycle to maintain a required amount of polarization. However, the resonance strength could in general only be computed for first-order resonances and for synchrotron sidebands. When Siberian Snakes adjust the spin tune to be 1/2, as is required for high energy accelerators, first-order resonances do not appear and higher-order resonances become dominant. Here we will introduce the strength of a higher-order spin-orbit resonance, and also present an efficient method of computing it. Several tracking examples will show that the so computed resonance strength can indeed be used in the Froissart-Stora formula. HERA-p is used for these examples which demonstrate that our results are very relevant for existing accelerators.Comment: 10 pages, 6 figure

    Beam-Breakup Instability Theory for Energy Recovery Linacs

    Full text link
    Here we will derive the general theory of the beam-breakup instability in recirculating linear accelerators, in which the bunches do not have to be at the same RF phase during each recirculation turn. This is important for the description of energy recovery linacs (ERLs) where bunches are recirculated at a decelerating phase of the RF wave and for other recirculator arrangements where different RF phases are of an advantage. Furthermore it can be used for the analysis of phase errors of recirculated bunches. It is shown how the threshold current for a given linac can be computed and a remarkable agreement with tracking data is demonstrated. The general formulas are then analyzed for several analytically solvable cases, which show: (a) Why different higher order modes (HOM) in one cavity do not couple so that the most dangerous modes can be considered individually. (b) How different HOM frequencies have to be in order to consider them separately. (c) That no optics can cause the HOMs of two cavities to cancel. (d) How an optics can avoid the addition of the instabilities of two cavities. (e) How a HOM in a multiple-turn recirculator interferes with itself. Furthermore, a simple method to compute the orbit deviations produced by cavity misalignments has also been introduced. It is shown that the BBU instability always occurs before the orbit excursion becomes very large.Comment: 12 pages, 6 figure

    Beam Based Alignment of Interaction Region Magnets

    Full text link
    In conventional beam based alignment (BBA) procedures, the relative alignment of a quadrupole to a nearby beam position monitor is determined by finding a beam position in the quadrupole at which the closed orbit does not change when the quadrupole field is varied. The final focus magnets of the interaction regions (IR) of circular colliders often have some specialized properties that make it difficult to perform conventional beam based alignment procedures. At the HERA interaction points, for example, these properties are: (a) The quadrupoles are quite strong and long. Therefore a thin lens approximation is quite imprecise. (b) The effects of angular magnet offsets become significant. (c) The possibilities to steer the beam are limited as long as the alignment is not within specifications. (d) The beam orbit has design offsets and design angles with respect to the axis of the low-beta quadrupoles. (e) Often quadrupoles do not have a beam position monitor in their vicinity. Here we present a beam based alignment procedure that determines the relative offset of the closed orbit from a quadrupole center without requiring large orbit changes or monitors next to the quadrupole. Taking into account the alignment angle allows us to reduce the sensitivity to optical errors by one to two orders of magnitude. We also show how the BBA measurements of all IR quadrupoles can be used to determine the global position of the magnets. The sensitivity to errors of this method is evaluated and its applicability to HERA is shown

    Thermocurrents and their Role in high Q Cavity Performance

    Full text link
    Over the past years it became evident that the quality factor of a superconducting cavity is not only determined by its surface preparation procedure, but is also influenced by the way the cavity is cooled down. Moreover, different data sets exists, some of them indicate that a slow cool-down through the critical temperature is favourable while other data states the exact opposite. Even so there where speculations and some models about the role of thermo-currents and flux-pinning, the difference in behaviour remained a mystery. In this paper we will for the first time present a consistent theoretical model which we confirmed by data that describes the role of thermo-currents, driven by temperature gradients and material transitions. We will clearly show how they impact the quality factor of a cavity, discuss our findings, relate it to findings at other labs and develop mitigation strategies which especially addresses the issue of achieving high quality factors of so-called nitrogen doped cavities in horizontal test

    Generalized Courant-Snyder Theory for Charged-Particle Dynamics in General Focusing Lattices

    Get PDF
    The Courant-Snyder (CS) theory for one degree of freedom is generalized to the case of coupled transverse dynamics in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D sympletic rotation. The envelope equation, the transfer matrix, and the CS invariant of the original CS theory all have their counterparts, with remarkably similar expressions, in the generalized theory.open7
    corecore